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INTEGRATION, ERLANG STYLE

• External: OS processes separate from the Erlang VM

• Ports

• C Nodes

• Jinterface

• TCP/UDP/SCTP networking
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INTEGRATION, ERLANG STYLE

• Internal: statically or dynamically linked into the Erlang VM

• Erlang Built-in Functions (BIFs)

• Port Drivers

• Native Implemented Functions (NIFs)
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INTEGRATION EXAMPLES

• rebar uses ports for external commands like git, grep, rsync

• Erlang's inet_drv port driver

• written in C

• supports TCP, UDP, SCTP for Erlang applications

• Riak's eleveldb persistence backend is a C++ NIF

4Monday, September 22, 14



NIF DETAILS
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NIF DETAILS

• Start with a regular Erlang module

• Functions can either be stubbed out to raise errors, or have 
default implementations

• Corresponding NIFs live in a dynamically loaded library

• Module typically specifies a NIF loading function via -on_load

• NIFs replace Erlang functions of the same name/arity at 
module load time
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NIF EXAMPLE

• Example module: bitwise

• Provides a function exor/2 that takes a binary and a value

• exor/2 computes an exclusive or of each byte of the binary 
with the argument value

• Find the code here: https://github.com/vinoski/bitwise.git
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NIF EXAMPLE
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NIF EXAMPLE
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NIF EXAMPLE
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NIF EXAMPLE
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EXOR/2 NIF
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NOW FOR SOME BIG DATA

• 2 billion bytes
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LET'S TIME OUR NIF
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LET'S TIME OUR NIF

• Nearly 6 seconds!

• This is bad.
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ERLANG PROCESS 
ARCHITECTURE
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CPU
Core 1

. . . . . . CPU
Core N

ERLANG PROCESS 
ARCHITECTURE
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OS + kernel threads
CPU

Core 1
. . . . . . CPU

Core N

ERLANG PROCESS 
ARCHITECTURE
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Erlang VM

OS + kernel threads
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ERLANG PROCESS 
ARCHITECTURE
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Erlang VM

OS + kernel threads
CPU

Core 1
. . . . . . CPU

Core N

N1

SMP
Scheduler Threads

(one per core)

ERLANG PROCESS 
ARCHITECTURE
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Erlang VM

Run Queues

OS + kernel threads
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Erlang VM

Run QueuesProcess

Process

Process

Process

Process

Process

OS + kernel threads
CPU
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. . . . . . CPU

Core N
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SMP
Scheduler Threads

(one per core)

ERLANG PROCESS 
ARCHITECTURE
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SCHEDULING A PROCESS
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• A scheduler takes a process from its run queue

18Monday, September 22, 14



SCHEDULING A PROCESS

• A scheduler takes a process from its run queue

• It executes it until it hits 2000 reductions (function calls) or 
until it waits for a message, or if it hits an emulator trap

18Monday, September 22, 14



SCHEDULING A PROCESS

• A scheduler takes a process from its run queue

• It executes it until it hits 2000 reductions (function calls) or 
until it waits for a message, or if it hits an emulator trap

• The process then gets scheduled out and another one chosen

18Monday, September 22, 14



SCHEDULING A PROCESS

• A scheduler takes a process from its run queue

• It executes it until it hits 2000 reductions (function calls) or 
until it waits for a message, or if it hits an emulator trap

• The process then gets scheduled out and another one chosen

• See Jesper Louis Andersen's scheduling description:
http://jlouisramblings.blogspot.com/2013/01/how-erlang-does-
scheduling.html
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THREAD PROGRESS

• Scheduler threads share some data structures

• But using traditional locks or ref counts to protect them scales poorly

• Instead, schedulers report their progress frequently to other 
schedulers

• Schedulers use their knowledge of other schedulers' progress to 
know when certain operations are safe

• For more details see https://github.com/erlang/otp/blob/master/erts/
emulator/internal_doc/ThreadProgress.md

19Monday, September 22, 14



BLOCKED SCHEDULERS

• Blocking a scheduler prevents thread progress, making other 
schedulers wait

• Blocking a scheduler also makes it unavailable to run other 
processes

• A NIF shouldn't occupy a scheduler for more than 1-2 ms

• NIF reductions should also be counted properly
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SCHEDULER COLLAPSE

• With Riak we've seen problems in production where 
schedulers go to sleep and stop executing processes

• Caused by misbehaving NIFs in Riak's storage backends 
interfering with normal scheduler operations

• Can also be caused by misbehaving standard Erlang functions

• See Scott Fritchie's nifwait repository, md5 branch:
https://github.com/slfritchie/nifwait.git
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LET'S COUNT REDUCTIONS
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LET'S COUNT REDUCTIONS
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A MISBEHAVING NIF
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A MISBEHAVING NIF

• Blocked a scheduler thread for 5.86 seconds

• And only 4 reductions
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WORKAROUNDS

• Break the data into chunks

• Call exor_bad/2 repeatedly, once for each chunk

• Combine the resulting chunks into a final result
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CHUNKING
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CHUNKING

26Monday, September 22, 14



CHUNKING
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CHUNKING

• Problem: how to determine optimal chunk size?

• Here, we arbitrarily chose 4MB chunks
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CHUNKING

• Problem: how to determine optimal chunk size?

• Here, we arbitrarily chose 4MB chunks
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CHUNKING RESULTS
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CHUNKING RESULTS

• 476 chunks processed

• Much better reduction count of 1445

• Scheduler was never blocked (probably anyway)

• But a longer execution time of 7.87 seconds
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A BETTER APPROACH

• For Erlang/OTP 17.3 (released 17 Sep 2014) I added a new 
NIF API function: enif_schedule_nif

• Takes a name and function pointer for a NIF, and an array of 
arguments to pass to it

• Schedules the argument NIF for future invocation with the 
specified arguments

• Allows the calling NIF to yield the scheduler
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EXOR2/6

• exor2/6 is an "internal NIF" not visible to Erlang

• Works through as much of the binary as it can before its timeslice 
runs out

• Reports reductions using enif_consume_timeslice

• When its timeslice is up, reschedules itself via enif_schedule_nif

• Adjusts chunksize for the next iteration based on progress in each 
iteration
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...snip...
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...snip...
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A YIELDING NIF
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A YIELDING NIF

• 5.36 seconds, fastest so far

• At over 10000 reductions, much more accurate accounting

• We yielded the scheduler 5 times
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ANOTHER APPROACH:
DIRTY SCHEDULERS
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Erlang VM

Run Queues

OS + kernel threads
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DIRTY SCHEDULERS
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OS + kernel threads
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DIRTY SCHEDULERS
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DC: Dirty CPU Scheduler
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OS + kernel threads
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DC: Dirty CPU Scheduler
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DIRTY SCHEDULERS

N
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Shared DC Run Queue
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DIRTY SCHEDULERS

N

CPU
Core 1

. . . . . . . . . . . . . CPU
Core N

1 . . . . . . . . . . . . .DC1 DCN

Shared DC Run Queue

Shared DI/O
Run Queue

DI/O NDI/O 1

DI/O: Dirty I/O Scheduler

OS + kernel threads
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DIRTY SCHEDULERS
Shared DI/O
Run Queue

DI/O NDI/O 1

DI/O: Dirty I/O Scheduler

OS + kernel threads
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ENABLING DIRTY 
SCHEDULERS

• configure --enable-dirty-schedulers

• Your Erlang shell will print something like the following system 
version line:

Erlang/OTP 17 [erts-6.2] [source] [64-bit] [smp:8:8] \
    [ds:8:8:10] [async-threads:10] [kernel-poll:false]

44Monday, September 22, 14



USING DIRTY SCHEDULERS

• Either schedule a dirty NIF via enif_schedule_nif

• Pass a flag to indicate dirty CPU or dirty I/O scheduling

• Or specify a NIF as dirty in your ErlNifFuncs array

• Both of these are new with Erlang 17.3, replacing old 
experimental dirty NIF API
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USING DIRTY SCHEDULERS
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USING DIRTY SCHEDULERS
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USING DIRTY SCHEDULERS
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A DIRTY EXOR/2
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A DIRTY EXOR/2

• 5.95 seconds on a dirty scheduler thread

• 8 reductions and 0 yields

• But was (almost) never on a regular scheduler

• Regular schedulers were running other jobs normally
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SCHEDULE IT DIRTY
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SCHEDULE IT DIRTY

• No chunking or yielding needed for dirty exor/2

• But dirty schedulers are finite resources

• Evil dirty NIFs can completely occupy all dirty schedulers and prevent 
other dirty jobs from running

• A dirty NIF can use enif_schedule_nif to reschedule, yielding to 
allow other dirty jobs to execute

• A NIF can use enif_schedule_nif to flip itself between regular 
mode and dirty mode
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NEXT STEPS

• Dirty drivers already in progress

• Native processes?

• see Rickard Green's original 2011 presentation on these 
topics: http://www.erlang-factory.com/upload/presentations/
377/RickardGreen-NativeInterface.pdf
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THANKS

http://shop.oreilly.com/product/0636920024149.do#
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