
Optimizing Native Code
for Erlang
Steve Vinoski
Basho Technologies
vinoski@ieee.org
@stevevinoski

1Monday, September 22, 14

mailto:vinoski@ieee.org
mailto:vinoski@ieee.org

INTEGRATION, ERLANG STYLE

• External: OS processes separate from the Erlang VM

• Ports

• C Nodes

• Jinterface

• TCP/UDP/SCTP networking

2Monday, September 22, 14

INTEGRATION, ERLANG STYLE

• Internal: statically or dynamically linked into the Erlang VM

• Erlang Built-in Functions (BIFs)

• Port Drivers

• Native Implemented Functions (NIFs)

3Monday, September 22, 14

INTEGRATION EXAMPLES

• rebar uses ports for external commands like git, grep, rsync

• Erlang's inet_drv port driver

• written in C

• supports TCP, UDP, SCTP for Erlang applications

• Riak's eleveldb persistence backend is a C++ NIF

4Monday, September 22, 14

NIF DETAILS

5Monday, September 22, 14

NIF DETAILS

• Start with a regular Erlang module

5Monday, September 22, 14

NIF DETAILS

• Start with a regular Erlang module

• Functions can either be stubbed out to raise errors, or have
default implementations

5Monday, September 22, 14

NIF DETAILS

• Start with a regular Erlang module

• Functions can either be stubbed out to raise errors, or have
default implementations

• Corresponding NIFs live in a dynamically loaded library

5Monday, September 22, 14

NIF DETAILS

• Start with a regular Erlang module

• Functions can either be stubbed out to raise errors, or have
default implementations

• Corresponding NIFs live in a dynamically loaded library

• Module typically specifies a NIF loading function via -on_load

5Monday, September 22, 14

NIF DETAILS

• Start with a regular Erlang module

• Functions can either be stubbed out to raise errors, or have
default implementations

• Corresponding NIFs live in a dynamically loaded library

• Module typically specifies a NIF loading function via -on_load

• NIFs replace Erlang functions of the same name/arity at
module load time

5Monday, September 22, 14

NIF EXAMPLE

• Example module: bitwise

• Provides a function exor/2 that takes a binary and a value

• exor/2 computes an exclusive or of each byte of the binary
with the argument value

• Find the code here: https://github.com/vinoski/bitwise.git

6Monday, September 22, 14

https://github.com/vinoski/bitwise.git
https://github.com/vinoski/bitwise.git

NIF EXAMPLE

7Monday, September 22, 14

NIF EXAMPLE

8Monday, September 22, 14

NIF EXAMPLE

8Monday, September 22, 14

NIF EXAMPLE

9Monday, September 22, 14

NIF EXAMPLE

10Monday, September 22, 14

EXOR/2 NIF

11Monday, September 22, 14

12Monday, September 22, 14

13Monday, September 22, 14

13Monday, September 22, 14

14Monday, September 22, 14

NOW FOR SOME BIG DATA

• 2 billion bytes

15Monday, September 22, 14

LET'S TIME OUR NIF

16Monday, September 22, 14

LET'S TIME OUR NIF

• Nearly 6 seconds!

• This is bad.

16Monday, September 22, 14

ERLANG PROCESS
ARCHITECTURE

17Monday, September 22, 14

CPU
Core 1

. CPU
Core N

ERLANG PROCESS
ARCHITECTURE

17Monday, September 22, 14

OS + kernel threads
CPU

Core 1
. CPU

Core N

ERLANG PROCESS
ARCHITECTURE

17Monday, September 22, 14

Erlang VM

OS + kernel threads
CPU

Core 1
. CPU

Core N

ERLANG PROCESS
ARCHITECTURE

17Monday, September 22, 14

Erlang VM

OS + kernel threads
CPU

Core 1
. CPU

Core N

N1

SMP
Scheduler Threads

(one per core)

ERLANG PROCESS
ARCHITECTURE

17Monday, September 22, 14

Erlang VM

Run Queues

OS + kernel threads
CPU

Core 1
. CPU

Core N

N1

SMP
Scheduler Threads

(one per core)

ERLANG PROCESS
ARCHITECTURE

17Monday, September 22, 14

Erlang VM

Run QueuesProcess

Process

Process

Process

Process

Process

OS + kernel threads
CPU

Core 1
. CPU

Core N

N1

SMP
Scheduler Threads

(one per core)

ERLANG PROCESS
ARCHITECTURE

17Monday, September 22, 14

SCHEDULING A PROCESS

18Monday, September 22, 14

SCHEDULING A PROCESS

• A scheduler takes a process from its run queue

18Monday, September 22, 14

SCHEDULING A PROCESS

• A scheduler takes a process from its run queue

• It executes it until it hits 2000 reductions (function calls) or
until it waits for a message, or if it hits an emulator trap

18Monday, September 22, 14

SCHEDULING A PROCESS

• A scheduler takes a process from its run queue

• It executes it until it hits 2000 reductions (function calls) or
until it waits for a message, or if it hits an emulator trap

• The process then gets scheduled out and another one chosen

18Monday, September 22, 14

SCHEDULING A PROCESS

• A scheduler takes a process from its run queue

• It executes it until it hits 2000 reductions (function calls) or
until it waits for a message, or if it hits an emulator trap

• The process then gets scheduled out and another one chosen

• See Jesper Louis Andersen's scheduling description:
http://jlouisramblings.blogspot.com/2013/01/how-erlang-does-
scheduling.html

18Monday, September 22, 14

THREAD PROGRESS

• Scheduler threads share some data structures

• But using traditional locks or ref counts to protect them scales poorly

• Instead, schedulers report their progress frequently to other
schedulers

• Schedulers use their knowledge of other schedulers' progress to
know when certain operations are safe

• For more details see https://github.com/erlang/otp/blob/master/erts/
emulator/internal_doc/ThreadProgress.md

19Monday, September 22, 14

BLOCKED SCHEDULERS

• Blocking a scheduler prevents thread progress, making other
schedulers wait

• Blocking a scheduler also makes it unavailable to run other
processes

• A NIF shouldn't occupy a scheduler for more than 1-2 ms

• NIF reductions should also be counted properly

20Monday, September 22, 14

SCHEDULER COLLAPSE

• With Riak we've seen problems in production where
schedulers go to sleep and stop executing processes

• Caused by misbehaving NIFs in Riak's storage backends
interfering with normal scheduler operations

• Can also be caused by misbehaving standard Erlang functions

• See Scott Fritchie's nifwait repository, md5 branch:
https://github.com/slfritchie/nifwait.git

21Monday, September 22, 14

LET'S COUNT REDUCTIONS

22Monday, September 22, 14

LET'S COUNT REDUCTIONS

22Monday, September 22, 14

A MISBEHAVING NIF

23Monday, September 22, 14

A MISBEHAVING NIF

• Blocked a scheduler thread for 5.86 seconds

• And only 4 reductions

23Monday, September 22, 14

WORKAROUNDS

• Break the data into chunks

• Call exor_bad/2 repeatedly, once for each chunk

• Combine the resulting chunks into a final result

24Monday, September 22, 14

CHUNKING

25Monday, September 22, 14

CHUNKING

26Monday, September 22, 14

CHUNKING

27Monday, September 22, 14

CHUNKING

• Problem: how to determine optimal chunk size?

• Here, we arbitrarily chose 4MB chunks

28Monday, September 22, 14

CHUNKING

• Problem: how to determine optimal chunk size?

• Here, we arbitrarily chose 4MB chunks

28Monday, September 22, 14

CHUNKING RESULTS

29Monday, September 22, 14

CHUNKING RESULTS

• 476 chunks processed

• Much better reduction count of 1445

• Scheduler was never blocked (probably anyway)

• But a longer execution time of 7.87 seconds

29Monday, September 22, 14

A BETTER APPROACH

• For Erlang/OTP 17.3 (released 17 Sep 2014) I added a new
NIF API function: enif_schedule_nif

• Takes a name and function pointer for a NIF, and an array of
arguments to pass to it

• Schedules the argument NIF for future invocation with the
specified arguments

• Allows the calling NIF to yield the scheduler

30Monday, September 22, 14

31Monday, September 22, 14

32Monday, September 22, 14

32Monday, September 22, 14

32Monday, September 22, 14

33Monday, September 22, 14

EXOR2/6

• exor2/6 is an "internal NIF" not visible to Erlang

• Works through as much of the binary as it can before its timeslice
runs out

• Reports reductions using enif_consume_timeslice

• When its timeslice is up, reschedules itself via enif_schedule_nif

• Adjusts chunksize for the next iteration based on progress in each
iteration

34Monday, September 22, 14

...snip...

35Monday, September 22, 14

...snip...

35Monday, September 22, 14

...snip...

35Monday, September 22, 14

...snip...

35Monday, September 22, 14

...snip...

35Monday, September 22, 14

36Monday, September 22, 14

36Monday, September 22, 14

36Monday, September 22, 14

36Monday, September 22, 14

36Monday, September 22, 14

A YIELDING NIF

37Monday, September 22, 14

A YIELDING NIF

• 5.36 seconds, fastest so far

• At over 10000 reductions, much more accurate accounting

• We yielded the scheduler 5 times

37Monday, September 22, 14

ANOTHER APPROACH:
DIRTY SCHEDULERS

38Monday, September 22, 14

Erlang VM

Run Queues

OS + kernel threads
CPU

Core 1
. CPU

Core N

N1

SMP
Scheduler Threads

(one per core)

DIRTY SCHEDULERS

39Monday, September 22, 14

OS + kernel threads
CPU

Core 1
. CPU

Core N

N1

DIRTY SCHEDULERS

40Monday, September 22, 14

OS + kernel threads
CPU

Core 1
. CPU

Core N

N1

DIRTY SCHEDULERS

.DC1 DCN

DC: Dirty CPU Scheduler
41Monday, September 22, 14

OS + kernel threads
CPU

Core 1
. CPU

Core N

N1

DIRTY SCHEDULERS

.DC1 DCN

DC: Dirty CPU Scheduler

Shared DC Run Queue

41Monday, September 22, 14

DIRTY SCHEDULERS

N

CPU
Core 1

. CPU
Core N

1DC1 DCN

Shared DC Run Queue

42Monday, September 22, 14

DIRTY SCHEDULERS

N

CPU
Core 1

. CPU
Core N

1DC1 DCN

Shared DC Run Queue

Shared DI/O
Run Queue

DI/O NDI/O 1

DI/O: Dirty I/O Scheduler

OS + kernel threads

42Monday, September 22, 14

DIRTY SCHEDULERS
Shared DI/O
Run Queue

DI/O NDI/O 1

DI/O: Dirty I/O Scheduler

OS + kernel threads

43Monday, September 22, 14

ENABLING DIRTY
SCHEDULERS

• configure --enable-dirty-schedulers

• Your Erlang shell will print something like the following system
version line:

Erlang/OTP 17 [erts-6.2] [source] [64-bit] [smp:8:8] \
 [ds:8:8:10] [async-threads:10] [kernel-poll:false]

44Monday, September 22, 14

USING DIRTY SCHEDULERS

• Either schedule a dirty NIF via enif_schedule_nif

• Pass a flag to indicate dirty CPU or dirty I/O scheduling

• Or specify a NIF as dirty in your ErlNifFuncs array

• Both of these are new with Erlang 17.3, replacing old
experimental dirty NIF API

45Monday, September 22, 14

USING DIRTY SCHEDULERS

46Monday, September 22, 14

USING DIRTY SCHEDULERS

46Monday, September 22, 14

USING DIRTY SCHEDULERS

46Monday, September 22, 14

A DIRTY EXOR/2

47Monday, September 22, 14

A DIRTY EXOR/2

• 5.95 seconds on a dirty scheduler thread

• 8 reductions and 0 yields

• But was (almost) never on a regular scheduler

• Regular schedulers were running other jobs normally

47Monday, September 22, 14

SCHEDULE IT DIRTY

48Monday, September 22, 14

SCHEDULE IT DIRTY

• No chunking or yielding needed for dirty exor/2

48Monday, September 22, 14

SCHEDULE IT DIRTY

• No chunking or yielding needed for dirty exor/2

• But dirty schedulers are finite resources

48Monday, September 22, 14

SCHEDULE IT DIRTY

• No chunking or yielding needed for dirty exor/2

• But dirty schedulers are finite resources

• Evil dirty NIFs can completely occupy all dirty schedulers and prevent
other dirty jobs from running

48Monday, September 22, 14

SCHEDULE IT DIRTY

• No chunking or yielding needed for dirty exor/2

• But dirty schedulers are finite resources

• Evil dirty NIFs can completely occupy all dirty schedulers and prevent
other dirty jobs from running

• A dirty NIF can use enif_schedule_nif to reschedule, yielding to
allow other dirty jobs to execute

48Monday, September 22, 14

SCHEDULE IT DIRTY

• No chunking or yielding needed for dirty exor/2

• But dirty schedulers are finite resources

• Evil dirty NIFs can completely occupy all dirty schedulers and prevent
other dirty jobs from running

• A dirty NIF can use enif_schedule_nif to reschedule, yielding to
allow other dirty jobs to execute

• A NIF can use enif_schedule_nif to flip itself between regular
mode and dirty mode

48Monday, September 22, 14

NEXT STEPS

• Dirty drivers already in progress

• Native processes?

• see Rickard Green's original 2011 presentation on these
topics: http://www.erlang-factory.com/upload/presentations/
377/RickardGreen-NativeInterface.pdf

49Monday, September 22, 14

http://www.erlang-factory.com/upload/presentations/377/RickardGreen-NativeInterface.pdf
http://www.erlang-factory.com/upload/presentations/377/RickardGreen-NativeInterface.pdf
http://www.erlang-factory.com/upload/presentations/377/RickardGreen-NativeInterface.pdf
http://www.erlang-factory.com/upload/presentations/377/RickardGreen-NativeInterface.pdf

ACKNOWLEDGEMENTS

• A huge thanks to Rickard Green of the Ericsson OTP team,
who has patiently guided me in this work

• Also thanks to Sverker Eriksson of the OTP team

• And thanks to Anthony Ramine for mentioning "NIF traps"
one day in the #erlang IRC channel, where I got the idea for
enif_schedule_nif

50Monday, September 22, 14

THANKS

http://shop.oreilly.com/product/0636920024149.do#

51Monday, September 22, 14

http://shop.oreilly.com/product/0636920024149.do#
http://shop.oreilly.com/product/0636920024149.do#

